

Vulnérabilité neurobiologique à l'alcool: état de l'art

Florence Noble, PhD

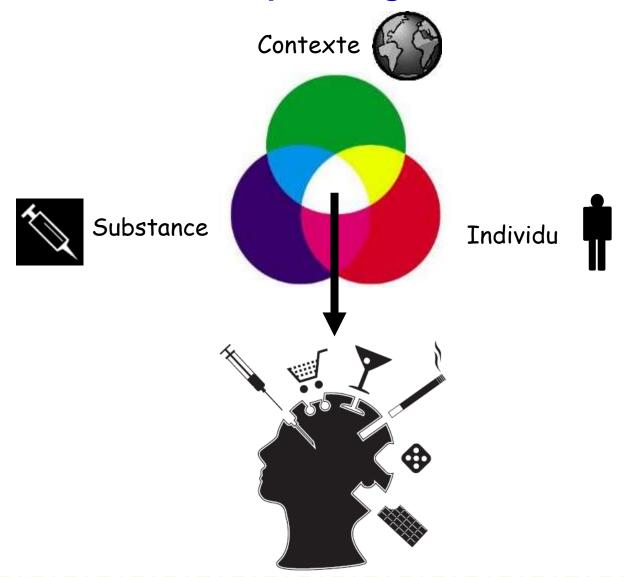
CNRS ERL3649, INSERM 1124 Université Paris Descartes

Neuroplasticité et Thérapies des Addictions

Alcool et santé

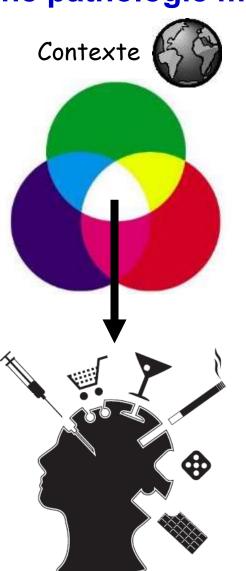
- 3,3 millions (5.9%) des décès dans le monde en 2012
- Environ 25% des décès chez les 25-39 ans
- Implication dans l'étiologie de 200 maladies et traumatismes (dont troubles psychiatriques, maladies infectieuses)
- 3^{ème} facteur de risque de morbidité dans les pays développés
- Pertes économiques et sociales pour l'individu et la collectivité

OMS, Rapport de situation mondial sur l'alcool et la santé, 2014


Mesures de la consommation d'alcool en France

- Expérimentation (>= une consommation au cours de la vie, 94,9% des 18-75 ans)
- Consommation occasionnelle (< 1 fois/semaine, 38%)
- Consommation régulière (>= 1 fois/semaine, 37%)
- Consommation quotidienne (12%)
- « Binge Drinking »/Alcoolisation Ponctuelle Importante API (6 verres en une occasion, 36%)
- Ivresse (19%)
- Abus/dependance (5-12%): incapacité à remplir ses obligations, usage physiquement dangereux, problèmes interpersonnels, tolérance, sevrage, perte de contrôle sur quantité et temps dédié, désir persistant de diminuer

Addiction... une pathologie multifactorielle



Addiction... une pathologie multifactorielle

Précocité de l'exposition à l'alcool Accessibilité

Modes de consommation

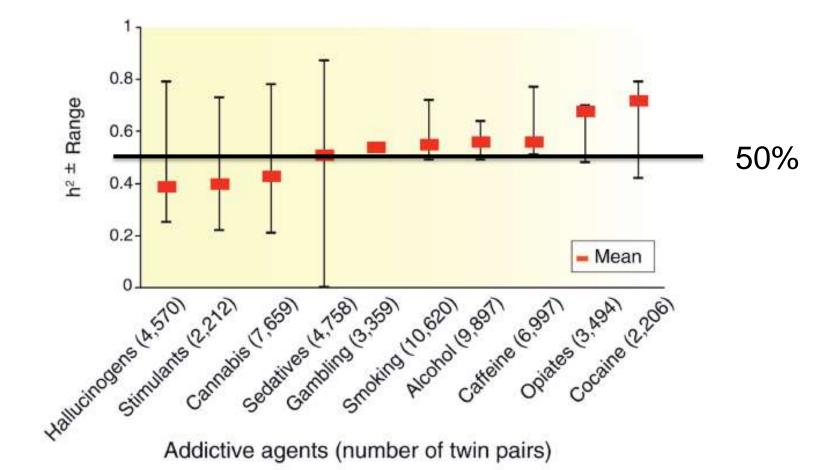
Epigénétique

Individu

Personnalité/tempérament Génétique Microbiote

Plan:

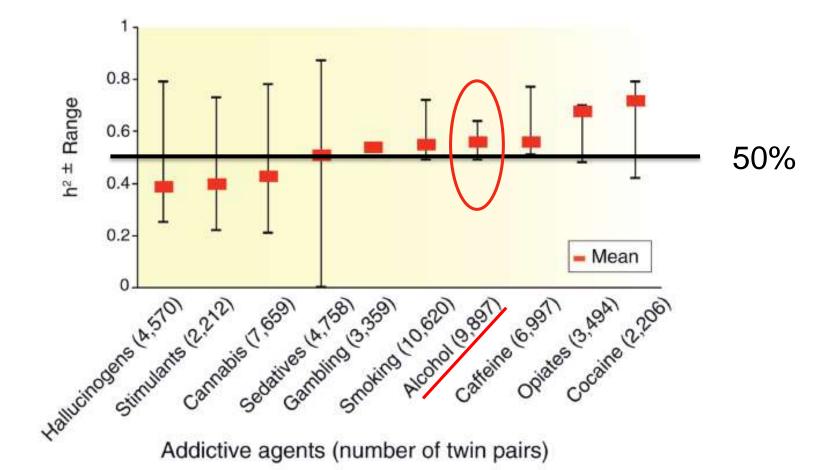
- ✓ Poids de l'héritabilité dans les addictions à l'alcool
- ✓ Rôle de l'environnement
- ✓ Les modes de consommation
- ✓ Rôle du microbiote



Plan:

- ✓ Poids de l'héritabilité dans les addictions à l'alcool
- ✓ Rôle de l'environnement
- ✓ Les modes de consommation
- ✓ Rôle du microbiote

Héritabilité: ce qui est du à son patrimoine génétique



Goldman et al. (2005) Nat Rev Genet

Héritabilité: ce qui est du à son patrimoine génétique

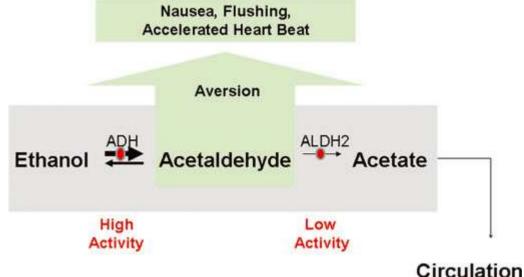
Goldman et al. (2005) Nat Rev Genet

Criblage du génome pour la consommation d'alcool

- □ 2,5 millions de variants génétiques testés selon la consommation d'alcool (gramme par jour et par kilo)
- ☐ 12 échantillons européens, avec 26.316 sujets
- □ SNP rs6943555 de AUTS2 associé à la consommation d'alcool (P = 4×10^{-8} to P = 4×10^{-9})

Réduction de 5% de la consommation (un verre, consommé en moyenne par jour, pour toute la cohorte)....

Schumann et al. (2011) PNAS 108 (17) 7119-7124



30 GWAS sur l'alcoolisme

Très rares réplication inter-études, excepté pour

- ADH et ALDH2
- GABA_A, et quelques autres

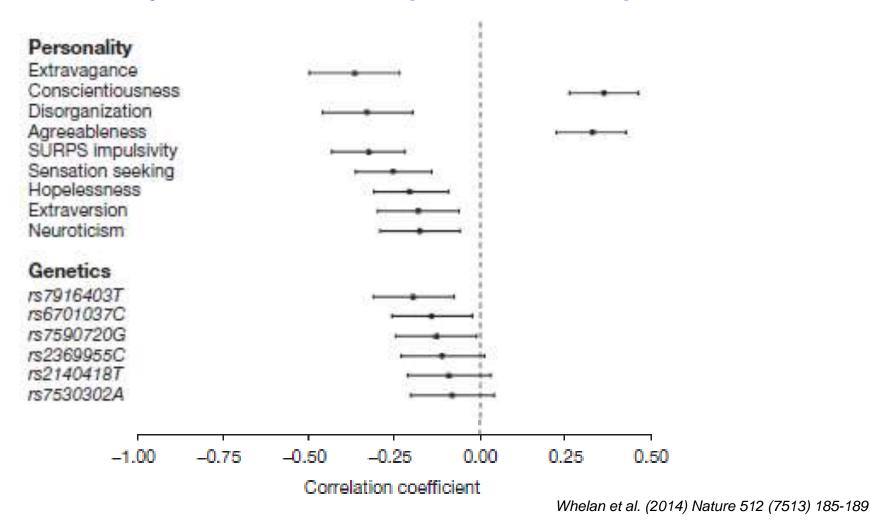
Rietschel and Treutlein (2012) Ann. N Y Acad

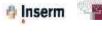
Le système dopaminergique

D2R

Studied phenotype	Number of			OR	p-value (meta-analysis) for	
	Studies	Patients	Controls		Association	Heterogeneity
Alcohol-dependence	40	5,305	3,994	1.31	4.58×10^{-8}	7.58×10^{-7}
Nicotine-dependence	23	8,873	10,942	0.92	0.04	1.07×10^{-11}
Opiate-dependence	9	2,364	1,826	1.09	2.2×10^{-5}	5.00×10^{-4}
Stimulant-dependence	10	2,292	2,527	1.00	0.07	0.01

Table 2 Genes involved in the dopamine pathway (and ANNKI) having one or more variants associated with one or more addictions, and related deficit(s) in impulse control (derived from Kreek et al. 2005)


Gene	Impulsivity	Risk taking	Stress reactivity	Addiction	Drug	
DRD2	(-1 2)	879	2 -2	+	Alcohol; Addiction	
ANKK1	3 - 2	+	9 - 9	+	Alcohol; Addiction	
DRD3	()	+	9 - 9	+	Alcohol; Stimulants; Addiction	
DRD4	+	+	(g - -)	+	Opiates; Stimulants; Alcohol; Addiction	
DBH) - 3	53 53	+ Stimulants; Add		Stimulants; Addiction	
DAT	+	5 5	9 0	+ Alcohol; Addiction		
MAOA	+	6 8	8 6	+	Alcohol; Addiction	
COMT	+	8 - 8	+	+	Alcohol; Opiates	


Gorwood et al. (2012) Hum Genet

Les facteurs de risque à 14 ans du binge drinking à 16 ans: rôle majeur des facteurs de personnalité/tempérament

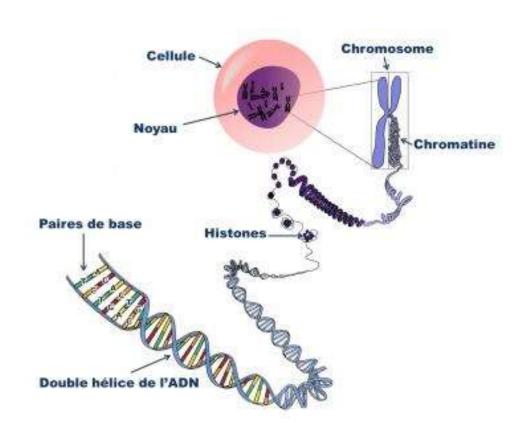
Mercredi 1er avril 2015

Poids de l'héritabilité dans les addictions à l'alcool

- La génétique est clairement intéressante.
- ➤ 22.000 gènes impliqués dans autre chose que l'alcoolodépendance.
- ➤ Les facteurs génétiques ne vont pas directement expliquer le risque, ils vont être en interaction avec l'environnement.

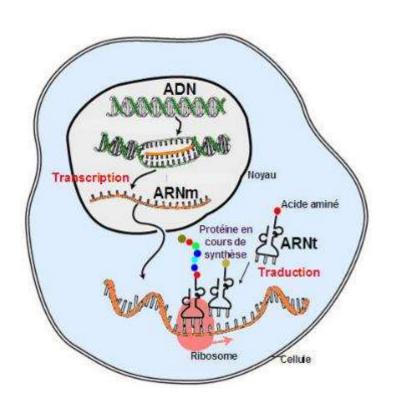
Plan:

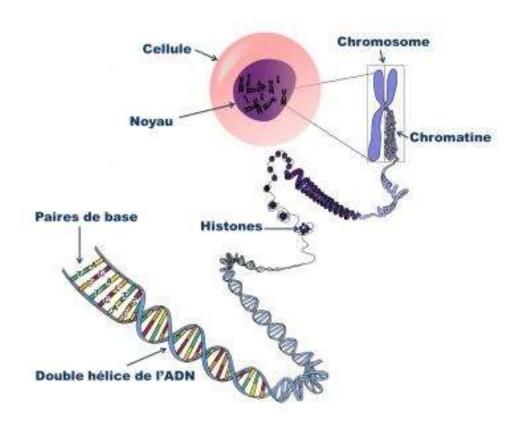
- ✓ Poids de l'héritabilité dans les addictions à l'alcool
- ✓ Rôle de l'environnement
- ✓ Les modes de consommation
- ✓ Rôle du microbiote



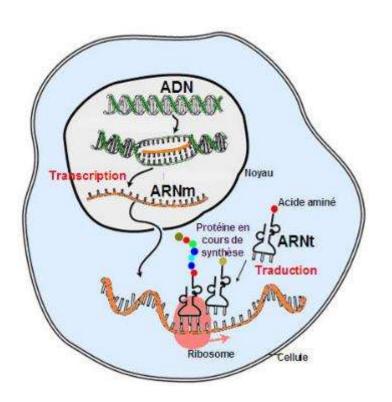
Epigénétique

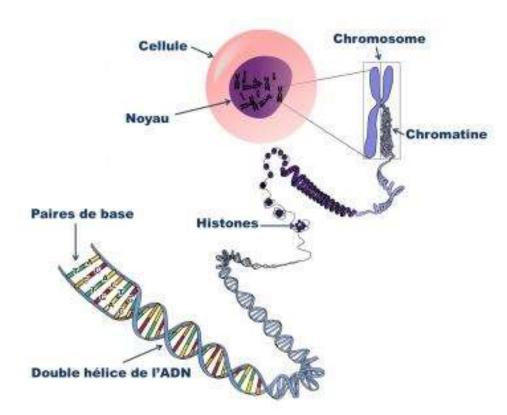
L'épigénétique est l'ensemble des mécanismes moléculaires concernant le génome et l'expression des gènes, qui peuvent être influencés par l'environnement et l'histoire individuelle




Chromosomes: support de la génétique. Mais où se situe l'épigénétique?

Chromosomes: support de la génétique. Mais où se situe l'épigénétique?





Méthylation de l'ADN: module la fixation des facteurs de transcription et d'expression des gènes.

Modifications chimiques des histones: modifie l'accès au gène. Petits et longs ARN non-codants: dégrade l'ARN et inhibe sa traduction

Epigénétique

L'épigénétique est l'ensemble des mécanismes moléculaires concernant le génome et l'expression des gènes, qui peuvent être influencés par l'environnement et l'histoire individuelle

Environnement: alimentation, drogues, pesticides... Histoire individuelle: stress, comportement maternel....

Action de l'alcool sur l'épigénétique: hypométhylation

Sub-root	GO ID	Category name	Reference genes		
Biological	GO:0007033	Vacuole organization	VPS18, BECN1		
process	GO:0010647	Positive regulation of cell communication	NEK6, BECN1, GRIA4		
	GO:0006996	Organelle organization	VPS18, ERCC1, NEK6, BECN1, ASPM		
	GO:0033043	Regulation of organelle organization	ERCC1, NEK6		
	GO:0000087	M phase of mitotic cell cycle	NEK6, ASPM		
	GO:0000280	Nuclear division	NEK6, ASPM		
	GO:0048285	Organelle fission	NEK6, ASPM		
	GO:0007067	Mitosis	NEK6, ASPM		
	GO:0051301	Cell division	NEK6, ASPM		
	GO:0000279	M phase	NEK6, ASPM		
Molecular	GO:0001883	Purine nucleoside binding	TXNRD1, NEK6		
function	GO:0004871	Signal transducer activity	NEK6, GRIA4		
	GO:0046914	Transition metal ion binding	VPS18, NUDT15		
	GO:0005515	Protein binding	VPS18, ERCC1, NEK6, ASPM, BECN1, CRMP1, XK, GRIA4		
	GO:0005488	Binding	VPS18, TXNRD1, ERCC1, NEK6, ASPM, BECN1, CRMP1, NUDT15, GRIA4, XK, SNAPC1		
	GO:0001882	Nucleoside binding	TXNRD1, NEK6		
	GO:0043169	Cation binding	VPS18, NEK6, NUDT15		
	GO:0003824	Catalytic activity	TXNRD1, PIGB, ERCC1, TTLL12, NEK6, NUDT15, CRMP1		
	GO:0060089	Molecular transducer activity	NEK6, GRIA4		
	GO:0046872	Metal ion binding	VPS18, NEK6, NUDT15		
Cellular	GO:0005819	Spindle	CRMP1, ASPM		
component	GO:0044430	Cytoskeletal part	VPS18, CRMP1, ASPM, GRIA4		
	GO:0005856	Cytoskeleton	VPS18, CRMP1, ASPM, GRIA4		
	GO:0043228	Non-membrane-bounded organelle	MRPS10, VPS18, ERCC1, CRMP1, ASPM, GRIA4		
	GO:0043229	Intracellular organelle	VPS18, TXNRD1, ERCC1, CDCA4, NEK6, ASPM, MRPS10, PIGB, CRMP1, BECN1, GRIA4, SNAPC1		
	GO:0043227	Membrane-bounded organelle	VPS18, TXNRD1, ERCC1, CDCA4, NEK6, ASPM, MRPS10, PIGB, BECN1, GRIA4, SNAPC1		
	GO:0043231	Intracellular membrane-bounded organelle	VPS18, TXNRD1, ERCC1, CDCA4, NEK6, ASPM, MRPS10, PIGB, BECN1, GRIA4, SNAPC1		
	GO:0043226	Organelle	VPS18, TXNRD1, ERCC1, CDCA4, NEK6, ASPM, MRPS10, PIGB, CRMP1, BECN1, GRIA4, SNAPC1		
	GO:0043232	Intracellular non-membrane-bounded organelle	MRPS10, VPS18, ERCC1, CRMP1, ASPM, GRIA4		
	GO:0044422	Organelle part	VPS18, PIGB, ERCC1, CRMP1, BECN1, ASPM, GRIA4		

Méthylome sur lymphocytes (63 AD vs 65 contrôles)

Alcool déshydrogénase 1A (ADH1A) ADH7 Aldéhyde déshydrogénase 3B2 Cytochrome P450 2A13

- Implication de gènes des ADH et ALDH
- Identification de nouveaux gènes candidats à l'AD

Zhang et al. (2013) Addict Biol

Plan:

- ✓ Poids de l'héritabilité dans les addictions à l'alcool
- ✓ Rôle de l'environnement
- ✓ Les modes de consommation
- ✓ Rôle du microbiote

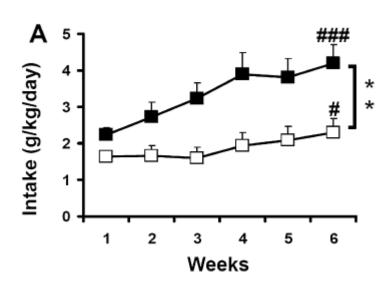
Focus sur les consommations précoces

Neuropharmacology 67 (2013) 521-531

Contents lists available at SciVerse ScienceDirect

Neuropharmacology

journal homepage: www.elsevier.com/locate/neuropharm


Alcohol intoxications during adolescence increase motivation for alcohol in adult rats and induce neuroadaptations in the nucleus accumbens

Stéphanie Alaux-Cantin¹, Vincent Warnault^{1,2}, Rémi Legastelois, Béatrice Botia, Olivier Pierrefiche, Catherine Vilpoux, Mickaël Naassila*

DISERM EN 24, Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP), Université de Picardie Jules Verne, UFR de Pharmacie, SFR CAP Santé, 1 rue des Louvels, Amiens 80000, France

Intermittent 20% EtOH access

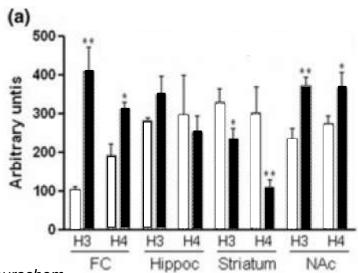
Focus sur les consommations précoces

Neuropharmacology 67 (2013) 521-531

Contents lists available at SciVerse ScienceDirect

Neuropharmacology

journal homepage: www.elsevier.com/locate/neuropharm


Alcohol intoxications during adolescence increase motivation for alcohol in adult rats and induce neuroadaptations in the nucleus accumbens

Stéphanie Alaux-Cantin¹, Vincent Warnault^{1,2}, Rémi Legastelois, Béatrice Botia, Olivier Pierrefiche, Catherine Vilpoux, Mickaël Naassila*

INSERM ERI 24, Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP), Université de Picardie Jules Verne, UFR de Pharmacie, SFR CAP Santé, 1 rue des Louvels. Amiens 80000, France

■ Pré-exposition EtOH

☐ Naïfs

Pascual et al. (2009) J. Neurochem.

Suivi d'une cohorte en France

- 3/4 des jeunes qui consomment de façon excessive à l'adolescence (Binge drinking, ivresse...) n'ont pas ce comportement à l'âge adulte
- 1/4 des jeunes qui ont des problèmes à l'adolescence vont avoir les mêmes problème à l'âge adulte

L'abus d'alcool à l'adolescence multiplie par 4 la probabilité du risque d'abus d'alcool à l'âge adulte



Plan:

- ✓ Poids de l'héritabilité dans les addictions à l'alcool
- ✓ Rôle de l'environnement
- ✓ Les modes de consommation
- ✓ Rôle du microbiote

Pathologie Biologie 63 (2015) 35-42

Available online at

ScienceDirect

www.sciencedirect.com

Elsevier Masson France

www.em-consulte.com

Review

The "psychomicrobiotic": Targeting microbiota in major psychiatric disorders: A systematic review

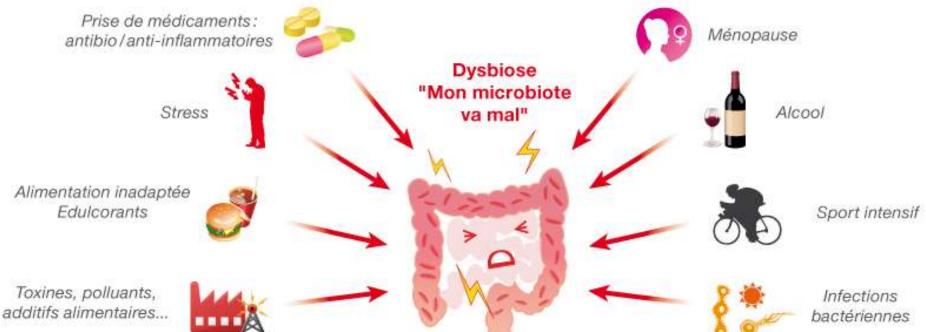
Le microbiote intestinal : un rôle potentiel dans les troubles psychiatriques majeurs

G. Fond a,*,1, W. Boukouaci b,1, G. Chevalier c, A. Regnault d, G. Eberl c, N. Hamdani a, F. Dickerson e, A. Macgregor f, L. Boyer g, A. Dargel a, J. Oliveira b, R. Tamouza b,2, M. Leboyer a,2

^{*}Inserm U955, FondaMental Foundation, Paris-Est university, Chenevier Hospital, AP-HP, GHU Mondor, DHU Pe-Psy, Pavillon Hartmann, 40, rue Mesly, 94000 Créteil, France

^a Jean-Dausset Laboratory & Inserm, UMRS 940, Saint-Louis hospital, 1, avenue Claude-Vellefaux, 75010 Paris, France

^cUnité de développement du tissu lymphoïde, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris, France


d Inserm, Institut Pasteur, aviesan/institut multi-organismes immuno logie, hémato logie et pneumologie (ITMO IHP), bâtiment Biopark, 8, rue de la Croix Jarry 1^{er} étage, 75013 Paris, France

^{*}Stanley Research Program, Sheppard Pratt Health System, 6501N, Charles Street, MD 21204 Baltimore, United States

[†]Inserm U1061, academic adult psychiatry department, Montpellier 1 university, La Colombière hospital, Montpellier CHRU, 191, avenue du doyen Gaston-Giraud, 34295 Montpellier cedex, France

^{*}EA 3279-Self-perceived Health Assessment Research Unit, School of Medicine, La Timone University, 27, boulevard Jean-Moulin, 13385 Marseille cedex 05, France

Alimenta Edi

Toxines. additifs ali World Journal of Gastrointestinal Pathophysiology

Submit a Manuscript: http://www.wjgnet.com/esps/ Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx DOI: 10.4291/wjgp.v5.i4.514

World J Gastrointest Pathophysiol 2014 November 15; 5(4): 514-522 ISSN 2150-5330 (online) © 2014 Baishideng Publishing Group Inc. All rights reserved.

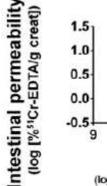
REVIEW

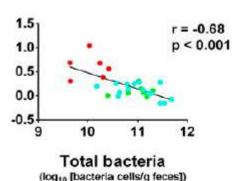
intensif

ions

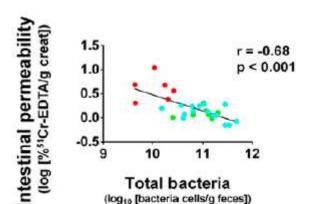
ennes

Alterations of the gut microbiome and metabolome in alcoholic liver disease


Wei Zhong, Zhanxiang Zhou

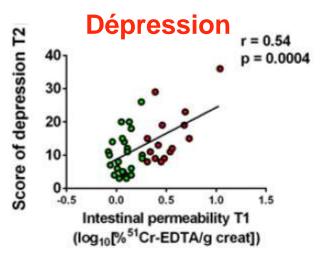


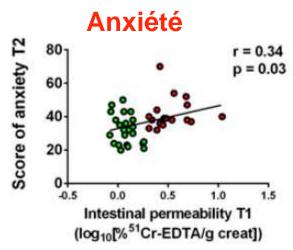
Microbiote intestinal, perméablité intestinale, risque de rechute chez les AD

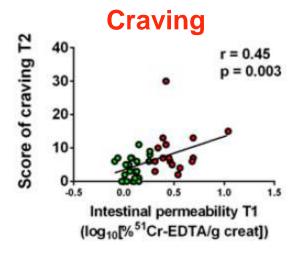


Leclercq et al. (2014) PNAS 111(42):E4485-93

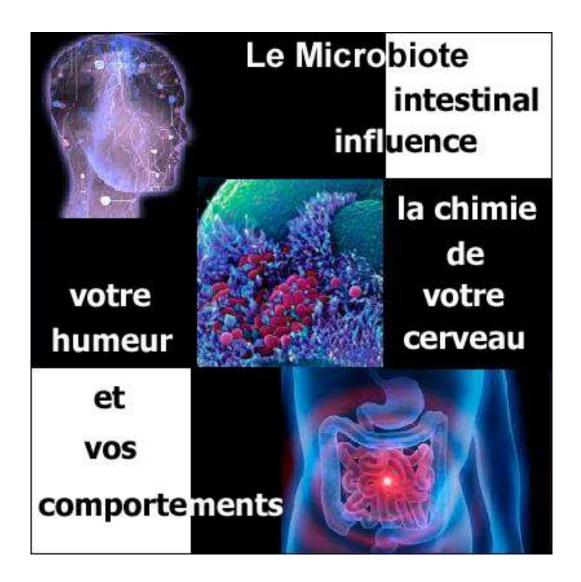
Corrélation négative : qté bactérie/PI




Microbiote intestinal, perméablité intestinale, risque de rechute chez les AD



Leclercq et al. (2014) PNAS 111(42):E4485-93


- Corrélation négative : qté bactérie/PI
- Corrélation positive: sévérité des symptômes/PI

- Facteurs génétiques (mais AD pas une maladie génétique)
- Epigénétique (qui est dépendante de la génétique)
- Les consommations précoces
- Le microbiote

- Facteurs génétiques (mais AD pas une maladie génétique)
- Epigénétique (qui est dépendante de la génétique)
- Les consommations précoces
- Le microbiote

Evolution des connaissances dans la vulnérabilité à l'AD

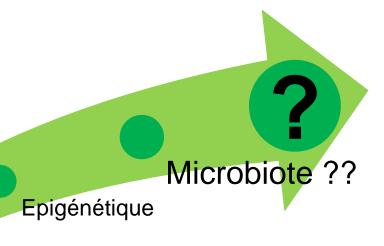
Génétique

- Facteurs génétiques (mais AD pas une maladie génétique)
- Epigénétique (qui est dépendante de la génétique)
- Les consommations précoces
- Le microbiote

- Facteurs génétiques (mais AD pas une maladie génétique)
- Epigénétique (qui est dépendante de la génétique)
- Les consommations précoces
- Le microbiote

Microbiote ?? Epigénétique

Génétique



- Facteurs génétiques (mais AD pas une maladie génétique)
- Epigénétique (qui est dépendante de la génétique)
- Les consommations précoces
- Le microbiote

Génétique

« la pollution atmosphérique aux particules les plus fines peut favoriser l'anxiété, par le biais de processus biochimiques »

Données issues d'une cohorte de plus de 70 000 infirmières américaines, suivies depuis 1976.

Power et al. (2015, 24 Mars) British Medical Journal (BMJ): The relation between past exposure to fine particulate air pollution and prevalent anxiety: observational cohort study.